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    GPSبیانات النظام العالمى للإحداثیاتو ل الانكسار فى الغلاف الجوى باستخدام طریقة أبل العكسیة استنباط التوزیع الرأسى لمعام
 القادمة من أسفل والمستترة فى الغلاف الجوى

الجوي. و تعتبر زاویة  القادمة من أسفل و المستترة في الغلاف الجوي في حساب التوزیع الرأسي لمعامل الانكسار في الغلاف GPSتستخدم موجات ال :الخلاصـة
القادمة من أسفل كل من الأرصاد ذات زوایا الأرتفاع الموجبة  GPSانحناء الأمواج كدالة في معامل التأثر هي الأرصاد الرئیسیة لهذا الاستخدام. توفر موجات ال

العكسیة. و تتطلب طریقة أبل شرط التماثل الكرى. و لذلك یتم  و السالبة. ولحساب التوزیع الرأسي لمعامل الانكسار في الغلاف الجوي یمكن استخدام طریقة أبل
 حساب فرق زاویا انحناء الأمواج ذات زوایا الأرتفاع الموجبة و السالبة مما یعنى التخلص من تأثیر طبقة الأینوسفیر.  

دام نمــاذج المحاكــاة التــى تســتعین  ببیانــات النمــاذج الریاضــیة یقیــیم البحــث الحــالي طریقــة أبــل لحســاب التوزیــع الرأســي لمعامــل الانكســار فــي الغــلاف الجــوي باســتخ
نتـائج أنـه یمكـن اسـتخدام للغلاف الجوي و كذلك أرصاد البالونات. و قد تم عمل تحلیل البیانات باعتبار الغلاف الجوي في حالتیـه الجافـة و الرطبـة. و قـد أظهـرت ال

 %.٠,٢عالیه. و كانت قیمة الخطأ النسبي المئویة في حدود  طریقة أبل لحساب التوزیع الرأسي لمعامل الانكسار بدقة

ABSTRACT: Down Looking (DL) GPS radio occultation can produce an estimate of the atmospheric refractivity 
profile. The main observations are the bending angle as a function of the impact parameter. DL Provides both negative as 
well as positive elevation angle measurements. Abel inversion can be operated on a profile of partial bending angle found 
by subtracting the positive elevation measurement from the negative one with the same impact parameter. Abel inversion 
requires the spherical symmetrical assumption. Basically, partial bending calculation removes the ionospheric bending and 
hence it is possible to use a single frequency GPS receiver. 
The current paper introduces a simulation data for the case of a receiver on Mountain top. The simulation uses model 
refractivity from MSISE-90 Model as well as radiosonde data. Random noises are added to the bending angle profile before 
inversion. The result shows that it is possible to produce accurate vertical refractivity profile below the receiver altitude. 
The calculation of the water vapor profile is also made using temperature profile information from the MSISE-90 Model as 
well as radiosonde.  The relative errors in the retrieved refractivity profile are always less than 0.2%.  

INTRODUCTION
When electromagnetic signal passes through the 

atmosphere, it is refracted. The magnitude of the refraction 
depends on the gradient of refractivity normal to the path, 
which depends on the gradients of density and water vapor. 
Thus measurements of refraction will contain information 
on the density (and hence temperature) and the water vapor 
along the path. The effect is more pronounced when the 
signal traverses a long atmospheric limb path. A series of 
such a path at different tangent heights yields 
measurements containing information on the vertical 
profile of refractivity (fig. 1).  Refractivity can be 
converted to a profile of temperature and/or water vapor.  
At radio frequencies, it is not possible to make direct and 
accurate measurements of the refracted angle. However, if 
the transmitter and receiver are in relative motion, the 
refraction introduces a change in the Doppler shift of the 
received signal, and this can be related to the refracted 
angle [Eyre, 1994; Larsen et al, 2004]. 

There were early proposals for remote sensing of the 
earth’s atmosphere using such “radio occultation” or 
“refractometry” techniques [Fishbach, 1965; Lusignan et 
al, 1969]. However, due to technical limitations, till 
recently they have only been applied successfully to 
studies of the planetary atmosphere [e.g. Kliore et al, 
1965].  With the advent of Global Positioning System 
(GPS), together with the possibility of GPS receiver 
abroad a Low Earth Orbiter (LEO), it is now used for 
accurately sensing the earth’s atmosphere. 

The high accuracy of the radio occultation 
measurements using GPS at wavelengths 19 and 24 cm 
was demonstrated [Melbourne et al., 1994; Ware et al., 
1996; Kursinski et al., 1996, 1997; Rocken et al, 1997; 
Feng and Herman, 1999; Schreiner et al., 1999]. First 
experiments in other frequency bands have been conducted 
in 1989-1998 years at wavelengths 2 and 32 cm as 
described by Yakovlev et al. [1995] and Yakovlev [1998]. 
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Fig. 1. Concept of refractivity profiling using 
Radio Occultation Technique 

While GPS-LEO occultation data have the advantage 
of being global (One receiver in LEO provides about 500 
globally distributed occultations per day), the sampling in 
any region is relatively sparse without a large number of 
orbiting receivers [e.g. Kursinski et al, 1997]. By contrast, 
a receiver located inside the earth’s atmosphere (such as on 
a mountain top, or an airplane) can be used to provide data 
over specific areas of interest for the purpose of regional 
weather and climate studies [Cinzia et al, 1999]. 

A mountain-based or airborne receiver would track 
any GPS satellite as it sets or rises behind the earth’s limb. 
Therefore data can be collected at both negative and 
positive elevation angles relative to the receiver local 
horizon (fig. 2). The Viewing geometry of a down-looking 
GPS receiver located inside the atmosphere can be 
considered as a hybrid between the space and the ground 
based geometry. It combines the high vertical profiling 
capabilities of space data (at least for heights below the 
receiver) with the benefit of routinely obtaining a relatively 
large number of daily profiles in region of interest. Every 
occultation will produce a profile of refractivity below the 
height of the receiver, with a diffraction-limited, vertical 
resolution of 150-250m. 

One receiver with a full 3600 field of view will 
observe nearly 96 occultations per day scattered within 200 
km radius of the receiver. If the topography allows the use 
of several receivers, separated by distance of 50-200 km, 
hundreds of daily occultation can be obtained over that 
region. Such profiles when integrated with the 
accumulated water vapor distribution derived from ground 
based receivers, and possibly moisture information from 
any other accurate observations, is extremely useful for 

regional weather monitoring as well as hydrological 
research. 

For LEO occultation, Abel inversion is used to obtain 
the refractivity profile. Although fundamentally DL 
measurements are similar to the LEO measurements, it was 
originally thought that the limits of integration used in the 
Abel transform prevented its implementation when the 
receiver is inside the atmosphere [Zuffada et al. 1999].  In 
fact, it is possible to use an Abel inversion for the DL case. 
The measurement geometry is similar to the one 
considered by Bruton and Kattawar [1997] when inverting 
solar occultation data. 

The current paper introduces down looking GPS 
occultation concept. The paper is organized as follows: 
section 2 introduces the GPS occultation technique and the 
Abel inversion to drive the refractivity profile from the 
observation. Section two ends with the procedure used to 
calculate the temperature and/ or vapor from the obtained 
refractivity. The simulation is carried out for a 3.8 km high 
Mountain. The simulation analysis and the results are 
introduced in section 3. The analysis indicates that GPS 
receiver inside the atmosphere can be used to retrieve 
accurately the refractivity profile with high resolution. 

GPS OCCULTATION TECHNIQUE 
For each occultation event, the GPS occultation data 

analysis chain from the measured phase delay to the 
derivation of the neutral atmospheric parameters and can 
be divided into three main steps [e.g. Mousa and Tsuda, 
2001]: 
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Fig. 2.  A pictorial view of GPS down looking 
scheme. Atmospheric layers below the receiver 
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location are denoted by ma and those above  
the receiver by mu. 

1. Calculation of the atmospheric bending angle profile 
from the observed L1/L2 excess phase path time series 
(L1 and L2 are the phases of the two GPS carrier 
frequency). 

2. Retrieval of the refractivity profile from the atmospheric 
bending angle 

3. Calculation of the density, pressure and temperature or 
water vapor profiles based on the retrieved refractivity 
profile. 

BENDING ANGLE CALCULATION 
In the geometric optics approximation, a ray passing 

through the atmosphere behaves according to Fermat’s 
principle of least time. The ray travel along a curve defined 
by: 

n×r× sin(ϕ) = constant   ≡ a   (1) 

Where r is the distance from the origin of symmetry 
to a point on the ray path, ϕ is the angle between the 
direction of r and the tangent to the ray path, and n is the 
refractive index at r   (fig. 3).  Equation (1) corresponds to 
Snell’s law in polar coordinates for a spherically 
symmetric medium, and known as Bouguer’s formula. On 
this basis, a signal travelling in a spherically symmetric 
medium will bend by an angle (a) [Born and Wolf, 1980]: 
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Where a is the impact parameter of the ray. 

 

The basic GPS data from which the bending angle 
(a) is derived are the L1 and L2 phase delay. From 
knowledge of the position of the transmitter (rt) and the 
receiver (rr) and their clocks (fig. 3), the extra delay due to 
the atmosphere can be isolated [e.g., Hajj et al., 1996]. 

From knowledge of the atmospheric extra delay as a 
function of time the extra atmospheric Doppler can be 
derived. This extra atmospheric Doppler is related to the 
bending of the signal via the equation: 

∆f = -f/c ( Vr
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Where f is the GPS transmitter frequency, c is the 
speed of light, Vr and Vt  are the receiver and transmitter 
velocity vectors. The superscript r and θ indicate the radial 
and tangential component of the velocity vector, 
respectively. Φ r   and  Φ t  are the angles between the ray 
bath and the direction of r as before, but for both the 
receiver and the transmitter respectively. 

From equation (3) and the following equation, that is 
implied by Bouguer’s formula, 

rtt    ntt    sin (ψtt  + δtt  )  =   rr   nr sin (ψr + δr) = a    (4) 

(Angles are defined in figure 3) we can drive the total 
bending of the ray (a=δ t+ δr) as a function of the impact 
parameter (a). This bending angle (a), as a function of the 
impact parameter (a), is the fundamental function to be 
inverted. 

Fig.3. A schematic diagram defining the geometrical variables for a GPS 
transmitter/receiver link. 
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INVERSION SCHEME 
The Abel inversion has been used extensively in 

seismic and astronomical inversions, as well as planetary 
and Earth occultation data [e.g. Fjeldbo et al. 1971; 
Kursinski et al. 1997].  Starting with the bending angle 
determined from the GPS Doppler shift, equation (2) is 
inverted with Abel inversion to give the refractive index 
[e.g. Tricomi, 1977]: 
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Where x = nr is the refractional radius. 

Unlike the LEO case, in DL occultations there may 
be significant ray bending along sections of the path above 
the receiver position, so the bending will not be equal on 
both sides of the tangent point.  However Bruton and 
Kattawar [1997] noted that when the receiver is within the 
atmosphere, it is possible to observe rays at both positive 
and negative elevations.  These refer to rays that intersect 
the receiver from above and below the local tangent.  They 
also pointed out that, assuming spherical symmetry, for 
every negative elevation ray with bending angle aneg there 
is a corresponding positive elevation value ap with the 
same impact parameter value. Subtracting ap from aneg 
gives the partial bending angle a' (a) 

a' (a) = aneg (a)  -  ap(a),                                      (6) 
Where a' (a) is the bending that occurs along the 

section of path below the receiver.  By definition, as the 
tangent point approaches the receiver distance, rr , the 
partial bending approaches zero. 

The partial bending angle a' (a) can be written as: 
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Where x = nr, n (rr) is the refractive index at the 
receiver position and rr is the receiver position.  Equation 
(7) can be inverted with, 
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Where x (rr) is the refractional radius at the receiver 
position. 

CALCULATION OF ATMOSPHERIC 
PARAMETERS 

In the third step of the data analysis, the atmospheric 
parameters density (ρ), pressure (P), temperature (T) and 
/or water vapor (e) are derived from the refractivity profile 

using the dependence of refractivity on these parameters 
[e.g. Steiner et al., 1998]. Neutral refractivity (N) is given 
as [Smith and Weintraub, 1953]: 

N = 77.6 P/T + 3.73 ×105 e/T2    (9) 

In regions where the atmosphere is drier than a 
volume-mixing ratio of 10-4, the atmospheric parameters ρ, 
P, T can be derived directly from equation (9) ( as the 
vapor pressure e is zero in that case). However, in a 
warmer tropical region, the contribution of the water vapor 
to refractivity is significant and cannot be ignored. In such 
a case, there is ambiguity between the temperature and 
water vapor.  One can only solve for either the water vapor 
or the temperature using a priori meteorological and 
observation data. 

An iteration process is proposed by Gorbunov and 
Sokolovskiy[1993] to solve for the water vapor, starting 
with temperature knowledge and assuming dry air and then 
derive the pressure using the hydrostatic equation. After 
that, the pressure and temperature is used (via equation (9)) 
to calculate a first estimate water vapor and so on. The 
procedure converges after two iterations. 

SIMULATION   ِ◌  ANALYSIS 
In order to validate the algorithm’s ability to retrieve 

refractivity (as well as temperature and /or water vapor) 
when a receiver is inside the atmosphere, we constructed 
three sets of simulated measurements; dry case, wet case 
and wet case based on Radiosonde observations. The 
receiver is fixed at 3.8 km altitude tracking GPS signals at 
both positive and negative elevations. 

When the receiver is outside the atmosphere, bending 
measurements are smoothed over the time it takes the 
tangent height of the ray to descend the diameter of the 
first Fresnel zone [Kursinski et al., 1997]. In the geometric 
optics framework these smoothed measurements are 
approximately independent. Layer boundaries are then 
introduced between the tangent point of each of the 
measurements. The radius of the tangent point 
corresponding to a certain (a) measurement is estimated by 
solving the relation ( a = r . n(r) ) where n(r) , the index of 
refraction at r, is obtained from the a priori model used as a 
first guess. 

For a receiver inside the atmosphere, the bending 
measurements ai are grouped into a set of ma ‘negative 
elevation’ measurements and a set of mp ‘positive 
elevation’ measurements. The typical behavior of the 
bending a(a) is given in figure (4). This figure shows that, 
for a fixed receiver, the transition between negative and 
positive elevation data correspond to the maximum (a) of 
the (a) vs. (a) curve. This property is used to separate the 
negative observation from the positive one. 
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Fig. 5. Dry atmospheric case. (a) Fractional error in retrieved refractivity as a function  
of height; (b) error in retrieved temperature as a function of height. 
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Fig. 4. bending (a) and impact parameter (a) as a function of 
elevation angle for a receiver at 3.8 km altitude. 
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Fig. 6. Same as figure 5; but for the wet case. Both dry and wet part of the refractivity  
follow an exponential law; (b) water vapor retrieval errors. 

In all cases, starting with a model refractivity to be the 
truth, a set of rays linking the transmitter to the receiver 
were constructed with specified tangent heights, ranging 
from the earth’s surface to the receiver’s height. In a 
similar fashion, a set of rays linking the GPS satellite to the 
receiver was constructed to represent positive elevation 
angles above the receiver horizon. The positive 
measurements have impact parameter given by equation 
(1), where r is the radius of the receiver and ϕ is between 
900 (00 elevation) and 1800 (zenith). Noise was added to 
the simulated bending measurements assuming the 
standard deviation of the bending angle to be (σ) (σ = 0.01 
+ 10-5 (radian)). This value accounts for the spherical   
approximation as well as to the receiver noise. 

Dry case 
The MSISE-90 [hedin, 1991] model is used here to 

represent the model refractivity from which the synthetic 
bending data were generated. The retrieved refractivity 
(after inversion) is compared to the model one to check the 
accuracy of the solution. The percentage of the fractional 
errors of the retrieved refractivity is introduced in figure 
(5-a). It is obvious from figure (5-a) that the errors are 
usually less than .2% up to the receiver height. 

For this dry case, the temperature was driven using 
the hydrostatic equation following the procedure described 
before in section (2-3). From figure (5-b) we easily deduce 
that the error of the temperature retrieval is always less 
than 1 K. The temperature errors are gradually reduced 
from the earth’s surface (about 0.6 K) to the receiver 
location (about 0.2 K). 

WET CASE 

Similar to the dry case, the MSISE-90 model is used 
here to represent the dry part of the model refractivity. The 
wet part is added by assuming water vapor pressure to 
follow an exponential model with scale height equal to 2.5 
km. A weighting function is used to insure that the water 
vapor goes to zero at the height of 10 km.  The total 
refractivity (dry + wet) is used as the model to derive 
synthetic bending data. The percentage of the fractional 
errors of the retrieved refractivity is shown in figure (6-a). 
Figure (6-a) shows that the errors are usually less than 
0.2% up the receiver height. 

For that wet case, water vapor was driven using the 
iterative procedure described earlier in section (2-3). The 
temperature is assumed known and taken from the MSISE-
90 model. From figure (6-b) it is seen that the error of the 
water vapor retrieval is always less than 0.1 mbar. 

RADIOSONDE BASED CASE 

In this case the radiosonde observation is used to 
calculate the dry and wet refractivity model. The total 
refractivity (dry + wet) is used as the model to derive 
synthetic bending data. The percentage of the fractional 
errors of the retrieved refractivity is shown in figure (7-a). 
Figure (7-a) shows that the errors are usually less than 
0.2%. 
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Fig. 7. Same as figure 6; but the wet part of the refractivity is driven from radio sonde data. 

 

 

 

 

 

 

 

 

 

 

      

 

 

 

 

Water vapor again was driven using the iterative 
procedure described earlier in section (2-3). The 
temperature is assumed known and taken from the 
radiosonde observation. From figure (7-b) it is seen that 
the error of the water vapor retrieval is generally very 
small and always less than 0.1 mbar. 

CONCLUSIONS 
The paper describes and introduces the analysis of 

GPS occultation data for a receiver inside the atmosphere. 
The inversion technique can be used as a part of the data 
assimilation into numerical weather prediction system. The 
inversion technique is validated using data from MSISE-90 
model as well as actual radiosonde observation. An 
exponential atmosphere was used for the validation, but 
the technique is general enough to be applied to any one 
dimensional atmospheric model. 

Results of the simulation show that the bending angle 
measurements can retrieve the refractivity profile below 
the receiver altitude.  The errors in the retrieved 
refractivity are always less than .2%. The results also show 
that, it is possible to derive the water vapor with errors less 
than .1 mbar. These results can improve the tropospheric 
models which in turn can help to improve the GPS position 
accuracy. 
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